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ON THE NONUNIQUENESS AND INSTABILITY OF THE STATIONARY COfjBUSTION MODES 
IN THE BOUNDARY LAYER, WITH STRONG INJECTIONS 

V.M. AGRANAT 

A mathematical model given in /l/ describing approximately the heat and mass ex- 
change between the inert thermostat and reacting gas flow in the presenceofstrong 

injection of a chemically frozen gas, is used to analyze the influenceofthe force 
of injection and other factors on the stability of combustion in the boundary layer. 
The boundaries of the regions of stability and uniqueness of the stationary Combus- 
tion modes are constructed in the plane of the Damkdhler numbers. At small Lewis 
numbers a region corresponding to the self-oscillatory combustion modes is discov- 
ered, and an estimate given for the influence exerted by various factors on the 
frequency and amplitude of the self-oscillations. It is established that a strong 
injection of a chemically frozen gas stabilises the combustion process, since the 
regionof instability narrows appreciably with increasing force of injection. On 
the other hand, increase in the injection rate leads to appreciable increase in the 
size of the region of nonuniqueness of the stationary modes. 

1. Formulation of the problem. We consider a flow of a reactive gas pasttheleading 
stagnation point of the inert body of revolution with constant surface temperature T,,, in 
the presence of a constant strong injection of a chemically frozen gas through the surface of 
the streamlined body. The injected gas initiates in the boundary layer a combustion reaction, 
in which either the components of both incoming and injected stream, or only the components 
of the incoming stream) take part. We assume that the reaction is a first order reaction, 
and its rate depends on the temperature in accordance with the Arrhenius law, and on the 
concentration of a single, rate determining component of the gaseous mixture. The gaseous 
mixture is assumed by be effectively binary /2/, the radiation can be neglected, the Prandtl 
and Schmidt numbers and the product of density and viscosity are all constant, the specific 
heat capacities of different components are constant and equal to eath other, while the equa- 
tions of motion and continuity are quasistationary. Our aim is to investigate the possible 
modes of the combustion reaction. 

Under the above assumptions the mathematically formulated problem is reduced to the 
qualitative investigation of a boundary value problem /l/ for a system of two quasilinear 
parabolic equations for the temperature and concentration of the rate determining component, 
and a single ordinary differential equation for the stream function. At present the qualita- 
tive theory of the boundary value problems of this type lacsk an effective method of investi- 
gation. For this reason the author gave in /l/ an approximate method of qualitative investi- 
gation of the boundary value problem in question, based on its reduction to a dynamic second 
order system. The reduction is based on the hypothesis of strong injection /3-5/ and on 
the procedure described in /6/. In the final count the problem reduces, in accordance with 
/l/, to a qualitative analysis of the following dynamic system describing in approximate man- 
ner the combustion of gas near the contact surface: 

(1.1) 
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Here r is the dimensionless time, t is time, t, is the characteristic aerodynam1.s time; i A:I~.I 
T are the dimensionless stream function and temperature, C is the mass concentration of tt;*: 
rate determining component of the gaseous mixture, T is temperature, X? is the dimensionless 
activation energy; a and 0 are dimensionless parameters: c, and c, are the first and second 
Damklihler numbers; L. I? and SC are the Lewis, Prandtl and Schmidt numbers, 15, is a dimen- 

sionless parameter characterizing the geometry of blunting of the body of revolution (for the 

spherical and cylindrical blunting we have p1 = 0.5 and [j, - 1 respectively), I’, LS the 
velocity gradient of the unperturbed flow at the stagnation point, 5 is a rectangular coordin- 
ate directed along the generatrix of the body of revolution, u is the z-component of the 
velocity of gas; E, q and k, are the activation energy, thermal effect and the preexponent cf 
the reaction, R is the universal gas constant; p and CL are the density and dynamic viscosity 
of the gas ,M is the molecular weight of the mixture, cp is heat capacity at constantpressure, 
A is the heat conductivity coefficient, D is the effective coefficient of diffusion; the 
indices e, IL and A denote the gas parameters at the outside of the boundary layer, at the 

surface of the streamlined body, and at the contact surface respectively. 

Notes. lo. The mathematical model (1.1) is suitable, generally speaking, for describ- 

ing the combustion near the contact surface in the case when the reagents have not previously 
been mixed, as well as in the case when all reagents are presentinthe incoming stream and 
the zone of combustionis displaced from the contact surface into the depth of boundary layer. 

In the latter case however, the asymptotic estimate of the improper integrals carried out in 

the course of deriving (1.1) can, according to /6/, leadto appreciable errors, and this re- 
duces the accuracy of the model. 

2O. The accuracy of the mathematic model (1.1) increases with increasing injection, 

since in deriving the system (1.1) we used the expansions of the functions f,? and L‘near 

the streamlined surface, based on the hypothesis of strong injection. The injection is assum- 

ed to be strong /3-s/ if the injection parameter a = --I,, 2 2. The accuracy of the model (1.1) 

diminishes under moderate injection (0 <c < 2) . The expansion mentioned above and hence the 

system (1.1) become unsuitable in the case when the injected gas is not chemically frozen and 

can enter into reaction at once near the streamlined surface. In the latter case it is ex- 

pedient to use the second dynamic system described in /l/. 

3O. The need for solving the problem in question arises from the fact thatinthe course 

of numerical investigation of a layer which is not in chemical equilibrium one encounterssuch 

anomalous phenomena /7/ as the nonuniqueness and instability of the stationary modes. This 

is confirmed by e.g., the numerical experiments /8-lO/ carried out for the case of hot gase- 

ous mixtures flowing past heated inert thermostats, without injection /8,9/ and with moderate 

injection of an inert gas /lo/. However, such investigations have not been carried out for 

the case of strong inJection. 

2. Analysis of the dynamic system (1.1) and physical interpretationofthe 
results. The stationary combustion modes have the corresponding equilibrium states of the 

dynamic system (1.1). The coordinates c&O, ??A0 of the quilibrium states are obtained on the 

phase plane CA, Tb from the system of equations P (C,‘, TA”) = 0, Q (C&O, TJ) = 0 which yields 

ac + L”BC 
CA0 = p w - cp (f,) 

a + L’f’b c, (a + L”G) 
(2.1) 

q(7.")=(a-+ b)TA'---(u+DT,) 

2.2) 

The number of the states of equilibrium is equal to the number of roots of equation (2.2). In 

the limiting cases when the boundary layer is chemically frozen (Cl = 0) or in chemicalequil- 
ibrium (c,-+ OO), the equation has the following obvious unique solutions: 

-0 a+b’T 
A( 

m 
T,” = PA0 c CA” = CA,, Ez 

aC + L’i’bC e 

atb a + L’I* b 
w (C,=O) 

T,O = r”,, Ezs -f-g= + c, 
ace + L”‘bC, 

a+b 
> CAo=ckm=o (&-km) 

In all intermediate cases when the boundary layer is not in chemical equilibrium (U<c, < m) 

the problem of determining the number of the equilibrium states and their positions on the 

phase plane is complicated by the fact that the transcendental equation (2.2) cannotbesolved 

by analytic methods. We can however, provide a rough estimate for the position of the equili- 

brium states. Indeed, when T&"-C IfA0 and TAO> Tk,, then one part of (2.21 will be positive 
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and the other negative since q<O when Tl"<T&lO and (p>C, (aC, + L’IzbC,) when TAO > TA,. 

Therefore from (2.1) and (2.2) we obtain, for o< Cl<m, 

0 

T;,<T,“<Tk,, o<c*“<cA~ (2.3) 

To obtain a more accurate estimate of the position of the equilibrium states, equation 

(2.2) must be solved numerically. 
Let us turn our attention to the problem of determining the number of roots of (2.2) at 

O<Cl<oo. First we transform it to the form 

C,E (QC, + L”‘bCJ 
1 

@A0 a + L’l*b 

(a + b) R,‘= - b8, 
- 1 exp i+eAo,E =c 

I 

eA”= (TA”_l) E = 
(T,” - Te) E 

RT,’ ’ 
8,=(T,-l)E= (Tw;TT;)E 

c 

(2.4) 

where 8,", 8, denote the dimensionless stationary temperature of the contact surface and the 

temperature of the streamlined surface. Introducing the additional notation 

B=GE(aC,+L”*bC,), 6=a+ b, ~=b@~, v=fj’, ~=q 

we find that equation (2.4) for 8," coincides with equation (10) of /ll/, and the results of 

/11/ lead to the following conclusions: 

lo. For any O(C,< co the equation (2.4) has at least one solution e$ and, according 

to (2.31, 

2O. When O<C,<oo, equation (2.4) has a unique solution provided that 

c,<c** = 
4(a+bjiJl 

(aC, + L”BC,J [(E - 4) a + (E - 4i,J b] 
(2.5) 

3O. If c,> ce*, then bifurcation values C,,, and Cr,, of the parameter C, exist, on 

traversing these values the number of solutions of (2.4) changes. When 0 <CL < CI,i and 

C, > CL,, the solution is unique, while three different solutions exist for Cl,, < Cl<C1.2 l 

Thus for any 0< Cl < Q) the dynamic system (1.1) has at least one state of equilibriumwhich 
becomes unique when C,,<C,*. The necessary and sufficient conditions for the nonuniqueness of 

the equilibrium states have the form 

C, > c,*, Cl,, < C1 c= Cl.2 (2.6) 

The results obtained agree with those obtained by analyzing (1.1) in /l/, and supplement them. 

According to /l/ the number, type and stability of the equilibrium states of system (1.1) are 
determined by the signes of the quantities 

A,d&!xp[E (1 -+)I [a + b-(a{- L’lx6) C&?A”(T~“)-*] + (a + L”lb) (a + 0) 

If the conditions (2.6) do not hold, then the system (1.1) has a unique equilibriumstate 

which is an antisaddle (Ai> 0), stable at a,<0 and unstable at u,>O. When conditions 
(2.6) hold, the system (1.1) has three equilibrium states, one of which must be a saddle /l/ 
(Ai(O), i.e. an absolutely unstable equilibrium state, and the other two are antisaddles 

(nodes or foci) the stability of which is determined by the sign of cr. The unstable anti- 
saddles (Ai>O,ui> 0) can exit only when L< 1 /l/. 

Combining A1 =O with the formulas (2.1) and (2.2) we obtain the parametric equations 

for the boundary of the reigon (2.6) of nonuniqueness of equilibrium states on the C‘, c, - 
parameter plane. The boundary represents, at the same time, a boundary of the region of mono- 
tonous or quasistationary instability, and the equations are 

(2.7) cl= 
D f L"' b 

(a + b, (r,o)r 
[E~(r,")-((a+6)(Ta")*lexP[~(~- I)] 

cz= 
EV ( ‘Aa) 

ac + L”W 
[EC& (?=A”) - (~2 + b) (TA”)2]-1 

c lo 
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If we construcf. the CurVe 12.7) on the c,,C,-parameter plane with the values oiy :I!6 
remaining parameters fixed, then the determination of the bifurcation values i',., and 
is reduced to direct read-off from the curve (2.7) atthe given value of 

C;* % 

bining the relation 1 -I 0 with the formulas (2.1) and (7 
c,. Sinrliarly, ZOPI-- 

u _.'7) we obtain the fol:owing 
metric equations for the boundary of instability of the antlsaddles, 

i'ar 1- 
or of the transrtionn! 

oscillatory instability: 

Here and in 12.71 the function p(FA“) is determined from (2.11, and the quantity T," serves 
as a parameter varying, by virtue of (2.31, owr the interval (T,,, !?i,). 

The changes in the relative position of the curves (Z.7) and (2.8) on the CI,Cz para- 
meter plane when the remaining parameters vary , is of considerable interest, since it is 
their distribution that determines, in the final count, the possible conibustion modes ill/. 
The position of the curves (2.7) and (2.8) on the C1, C,-plane depends on seven dimensionless 
parameters a, b, T,, IT. L, C,. C,. F0r the further analysis it is expedient to replace the para- 
meters Cl, C, and C, by new parameters 

Were we assume that C, + 0, i.e. the rate determining component is present in the incoming 
stream. Taking (2.9) into account we conclude, that the behavior of the curves (2.7) and 
(2.8) on the Lf,,&-plane will depend only on the following six dimensionless parameters: a,h. 
r,, B, ‘%c*, 

Let us see how the above parameters affect the position of the boundaries of nonunique- 
ness and transitional instability in the presence of moderate and strong injection. 

Case of' moderate injection (0 < -h<.Zl. Irrespective of the fact that the accuragy 
of the model (1-i) is not great in the case Of maderate injection by virtue of the note 1 ~ 
it is this case that ought to be considered first since it is only at O<--fr<z that we can 
c0mpare the results obtained with the estimates of the values of e,,, and ?I,z given in /9,LD/. 
We write, in accordance with /IO/, 

For the above selected values of the parameters we have a= fl,bzJ.32i and the curves (1.71 
and (2.8! have the form shown in fig.1 where the solid curve 1 represents the boundary of non- 
uniqueness (AI-O) and the dashed curve the boundary of the region of instability of the anti- 
saddles (0, = 0). The region in which the stationary solution of the system (1.1) are unique 
is situated outside the solid, wedge-shaped curve, and _tht? region of stability of the anti- 
saddles lies outside the dashed curve. Analyzing Fig.1 we find that when c^,%; Cz* ~1.08 , then 
the system (1.1) has a unique state of equilibrium, namely a stable antisaddle (A, > 0, e, < O) 
for any C, which has a corresponding, in the physical sense, stable stationary reaction mode, 
For any C,>C~*there exists a range (c t,,.<1,2) of values of the parameter C, within which the 

system (l-1) has, according to what was said before, three equilibrium states Oneof which is 

a saddle not corresponding to any, physically feasible stationary mode, and the other two are 
stable antisaddles irrespective of the position of the point (CI,CZ) relative to the dashed 

curve 0, = 0. In fact, when L = 1 then the condition that (I$ ),O can hold, according to /l/, 
only in the case of a saddle (A,<@. Therefore the dashed curve ifl Fig.1 is of formal 
character only and does not represent a boundary of the region of instability. 

The authors of /9,X?/ give an estimate of the interval. over which the number of the 
stationary modes can vary for i, -.G.44.515 . Using the qraph of 12.7) in Fig.1 we find, that 
far the given LTz C,,l = '.5.1UR.(Y,,1 = 3~lO". The values of PI,, and Pt.Y obtained have the same 

order of magnitude as thase of /9,10/. A better agreement could not be expected, since on 
one hand the accuracy of the model (1.1) is pool at fu .x -0.5, on the other hand some addit- 

ional assumptions were made in /9,LO/, e.g. in solving the equation numericaliy for the dimen- 

sionless stream function, the flnw was assumed incompressible. 
Using the results of /9,10/ we can furnish the bifurcation ValueS CI,I alId t’t,? with d 

clear physical meaning: et,, is associated with extinguishing of the mixture and C',,.' with its 

ignition, and the interval CT,.,, i;,,J of nonuniquenss of the equilibrium states 0f the system 
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Fig.1 Fig.2 

(1.1) with the transition zone situated between the chemically frozen and chemical equilibrium 

states of the boundary layer. The behavior of the curves A,= 0 and a,=0 shown in Fig.1 re- 

mains unchanged at L > i. The curve a,=0 at L>l has a wedge-like shape and lies wholly in 

the region of nonuniqueness (A,<O). Both antisaddles of (1.1) are stable when C1,1<i‘l<i;l,~- 

Establishing one or another stationary solution depends on the initial conditions.Ontheother 

hand, when L<l, a decrease in the value of L is accompanied by an essential change in the 

behavior of the curve cl, = 0, namely, the curve forms a loop a part of which appears in the 

region of uniqueness. The situation is shown in Fig.2 where the solid and dashed lines re- 

present the boundaries of the regions of nonuniquenesses and instability respectively, for 

L =O.OI (Fig.2a) and L = 0.05 (Fig.2b) with the remaining parameters unchanged. It is clear 

that the loop increases with decreasing L. If the point (r,,?;,) falls within the region lying 
inside the loop but outside the solid wedge, then the system (1.1) will have a unique unstable 

equilibrium state (A,>0,~~>0). surrounded by a stable limit cycle /l/, and for these values 

of C, and Ca we have a self-oscillatory mode of combustion. 
The self-oscillations are depicted in Fig.3 showing the graphs of the relative concentra- 

tion of the rate determining component C ~ &-- C,'C, and dimensionless temperature 

at the contact surface versus and dimensionless time 7. The graphs are based o?Gr'da?aE 

obtained by numerical integration of the system (1.1) at 

& = 05,,ii,- = 2.389, T, = 1, Pr = 0.74, c', = O,f, = -0.7.E = 100, c, = 0.2, c* = 0.1 

for the case L = IO-’ (solid lines) and L= 2.5.iO-3 (dashed lines). The period of self-oscil- 
lations increases with increasing Lewis number, while L= 0.01 the self-oscillations vanish 
and a stationary mode is established after a time. A similar pattern obtains on reducing the 

parameter E. For L = 10-’ and E= 50 the period of self-oscillations is 1.5 times greater 
than at E =I00 and the self-oscillations disappear when E= 30. 

The self-oscillations shown 

above as well as the themlo- 
kinetic oscillations of the temp- 

erature and concentration fields, 

which were studied in /8,12/, are 

relaxation-type oscillations and 

are caused by the fact that at 

tel the reaction time tli is 

shorter than the thermal relaxa- 

. _= : 
tion time t, 

9 
or diffusion time t,l. 

c 25 In fact, according to the graphs 

L = IO-’ 
Fig.3 

in Fig.3 we have, for 
Fig.4 t,,it, z 0.54, t&J&j z 0.45, while for L = 

2.5.10-3 f,,/l, S 1.1, fP/fd = 0.79. With 

further increase in the value of 
L the reaction time t,, becomes longer than either t, or td, and the self-oscillations cease. 

ation 

Thus the decrease in the Lewis number Land incrase in the dimensionless energy of acti"- 
E leads todestabilisationof the combustion process in the boundary layer. At small L 

and large E a basically nonstationary combustion process, i.e. 
possible. 

a self-oscillatory process is 
The most drastic nonstationary effects appear when L-O and E-wax. therefore a 

study of the dynamic system (1.1) in the limit case when ~~0 and E-rm is worthwhile. It 
is interesting that when L =0 the system (1.1) coincides, with the accuracy of up to the 
notation, with the dynamic system /ll/ describing the nonstationary heat and mass exchange in 
a tubular chemical reactor with perfect mixing. When L= 0 and E-p, then the relative 
distribution oftheuniqueness and stability boundaries in the C,ia, C: -plane, which determines 
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the behavior of the solutions of (l-l), depends on two parameters I',, and z-= b:.l only. wticii 
T,=i, then according to /11/ the distribution of the curves A, =O and G,= 0 hds tile charact- 

eristic form shown in Fig.1, provided that Ib<8*= 0.7 . If on the other hand b),Z*, then thii 
curve el= 0 fbms a loop and dynamic system (1.1) has a manifold of possible solutions for 
various values of C,,C, described in /11,13,14/. In particular, 

Z>@. When 6 increases, 
self-oscillatory modes be- 

come possible when so does the size of the loop, and a part of the 
loop appears within the region of uniqueness. When r,,.#l. changes in the value of % causes 
analogous changes in the behavior of the curves A,= 0 and o,=o, with b' assuming a dif- 
ferent numerical value. 

Thus the combustion process becomes destabilised with increasing parameter %. Since 

it follows that h can increase either because the streamlined surface becomes hotter (increase 

in T,f, injection is reduced (reduction in a = -f,f t or a lighter gas is injected (reduc- 
tion in X7,). Conversely, cooling the streamlined surface, increased injection and injection 
of a heavier gas, all lead to decrease in the value of 6 and hence to stabilisation of the 
combustion process. It must be noted that the parameter 6 represents the adiabatic index of 
the combustion process. Indeed, when b=O, we have TO,, = Tc, Tam = T, + qC,/cl, = T, where Tb 
denotes a so-called maximum adiabatic temperature of combustion. The case s= 0 occurs when 
a=--fto+=, in which case the contact surface coordinate A= -2Zf&a-c~ becomes vanishingly 
small by virtue of the results of /l/ and the influence of the streamlined surface on the 
heat and mass exchange within the combustion zone. Since 6= kA-’ where k = (IVJ/(ZP~))'~~. the 
influence mentioned above incrases with increasing T and the combustion process becomes non- 
adiabatic. 

Case of strong injection (-f,>,2). In the case of strong injection we have, for 
0, = 0.5 and Pr = 0.54, 

‘14 ‘h 
=0.364 

If T,=1 and .Vlo=i, then 5, =:0.364<+ = 0.7. This implies that, even in the limit case when 
L = 0 and E--+X?, the curve a,=0 forms no loop and lies wholly in the region of nonunique- 
ness in the C,,C,-plane. The pattern remains the same when L>O and E<co, therefore it 
follows that in the case of strong injection with f,=i and a,=1 the combustion will always 
proceed into the stationary mode. When T,increasesand Ji, decreases, loss of stability in 
the stationary modes becomes possible. The loss is connected with the appearance of a loop 
in the curve o,=O at $=T*. When F_=i, this can happen only when .n, < a,* z 0.673, 
since by virtue of /ll/ when p,,,= l,L=O and E-m, then @ =0.7 and the inequality b; > fi 
leads to the condition ,i?,<(O.52)'. When 7‘, increases, so does R,*. 

Fig.4 shows the boundaries of the regions ofuniqueness (solid line) and stability (dash- 
ed line), at 

Pi = 0.5,Eip, = O.i,T,=: 5,Pr = 0.74,J, = -2 L = 0, C, = o,E, = 67.1366 

The size of the loop decreases with increasing .U,, it moves into the region of nonuniqueness, 
and disappears altogether. For example, at .V,, = 0.3 the loop is absent. We see therefore 
thatincreasingthe injection stabilizes the combustion. At strong injections the loss of 

stability and self-oscillations can occur at L-O, E-CC only in the case when .'i,< ‘if,* or 
when T,)T,+ (at fixed _;ir,). On the other hand, increasing the injection leads to substan- 
tial increase of the region of nonuniqueness. This follows e.g., from comparing the curve I 
of Fig.1 with the boundaries of the region of nonuniqueness at fwz-Z when .L = z (curve 2 

of Fig.1) and L =O.Ol (curve 3 of Fig.l), with the remaining parameters assuming the values 

used in /lo/. We see that for ti2 = 6.44518 /lo/ the value of El,, has increased compared with 

the case of j== -0.5 , by four orders of magnitude, while the value of iFI.% decreased by two 
orders of magnitude. Such a sharp change in the values of C,,, and Ct.% is caused by a con- 
siderable weakening of the influence of the wall on the combustion pxocess when the injection 
is increased. Reduction in the value of L shifts the curve A,= 0 into the region of smaller 

values of cl. 

3. Assessment of the results. The results obtained yield the following conclus- 

ions. 
lo. Strong injection stabilises the combustion, but does not eliminate the multiplicity 

of the stationary modes. Therefore, before carrying out the computations for a reactivebound- 
ary layer in the presence of strong injection in the traditional stationary formulation, the 
range of its applicability must first be estimated. 
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2O. The fact that the results obtained agree with the values of c1.1, cl.2 computed in /9, 

lO/ to within the order of magnitude, enables us to expect that in the case of strong injec- 

tion the system (1.1) will be even more suitable for carrying out dn approximate qualitat- 

ive analysis of the problem in question. In particular, (1.1) can be used to estimate the 

range of admissibility of the stationary formulation in the region of self-oscillations. The 

paper /15/ can serve as an example of successful matchinga qualitative analysis with the 

numerical computations. 
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